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Outline

Predictive Modeling
Application to “Learning to Rank” for web search
Forests of Randomized Trees

The Python ecosystem: Scikit-learn, IPython,
StarCluster
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Example: Learning to Rank
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Example: Learning to Rank

* [ earning to rank web search results
* |nput: numerical descriptors for query / results pairs
e Jarget: relevance score

* O:Irrelevant

 1: somewhat relevant

e 2: relevant



INnput Features

* Result page descriptors: v s oo o
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o User context descriptors: past user interactions (clicks, +1), time of
the day, day of the month, month of the year and user language

e ... typically more than 40 descriptors and up to several hundreds



Quantifying Success

* Measure discrepancy between predicted and true
relevance scores

* Jraditional Regression Metrics:
* Mean Absolute Error
* Explained Variance

e But the ranking quality is more important than the
poredicted scores...



NDCG: a ranking metric
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NDCG in Greek

k
rel;
DCGp(rel) = -
22:1 logo(? + 1)

DCGk == Discounted Cumulative Gains at rank k



Data from Microsoft Bing

« http://research.microsoft.com/en-us/projects/msir

10K or 30K anonymized queries (terms and results URLS)

10K queries:

e ~1.2M search results Datasets

The datasets are released on June 16, 2010.

MSLR-WEB10K|~ 1.2G|97c5d4e7c171e475¢91d7031e4fd8e79
MSLR-WEB30K|~ 3.7G|4beae4beelcd244fcOb2aff355a61555
e 5 target relevance levels

* 136 descriptors

e ~650MB In NumPy


http://research.microsoft.com/en-us/projects/mslr

Disclaimer:
this I1s not Big Data

* Couple of GB: fits in RAM on my laptop
e But painful to download / upload over the internet.

* Processing and modeling can be CPU intensive
(and sometimes distributed).



Growing randomized trees



Training a Decision Iree
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Training a Randomized Iree

* Pick a random subset of features (e.g. TFIDF,
BM25, PageRank, CTR...)

* Find the feature that best splits the dataset

 Randomize the split threshold between observed
min and max values

 Send each half of the split dataset to build the 2
subtrees



Training a Forest

* [rain n random trees independently
e Use different PRNG seeds

* At prediction time, make each tree predict its best
guess and:

 make them vote (classification)

e average predicted values (regression)



Extra lrees
one node with 8 CPUs

leatn

from sklearn.ensemble import ExtraTreesRegressor
trees = ExtraTreesRegressor(n estimators=100, n jobs=8)

trees.fit (X train, y train)

y predicted = trees.predict(X vali)
r2 score(y vali, y predicted)



Growing randomized trees
on the cloud



10x8 cores cluster on EC?2
N 20mMin

@ [~]$ starcluster start ip -s 10 --force-spot-master
StarCluster - Chttp://star.mit.edu/cluster) (v. 0.9999)
Software Tools for Academics and Researchers (STAR)
Please submit bug reports to starcluster@mit.edu

>>> Using default cluster template: ip
>>> Validating cluster template settings...

>>> (Cluster template settings are valid

>>> Starting cluster...

>>> Launching a 10-node cluster...

>>> Launching master node (ami: ami-765b3elf, type: cl.xlarge)...
>>> Creating security group @sc-ip...
SpotInstanceRequest:sir-66705632

>>> Launching node@®@1 (ami: ami-765b3elf, type: cl.xlarge)
SpotInstanceRequest:sir-d2bcf232
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>>> Waiting for all nodes to be in a 'running' state...

10710 LEELEERRRrrenrrenrrrenrrenrrrerererereervere v rer e eere e e e rer el
>>> Waiting for SSH to come up on all nodes...

10710 LEELEERRRrrnnereerreerererrreeereerreerereerreerreer e veer et
>>> Waiting for cluster to come up took 6.726 mins

>>> The master node is ec2-174-129-190-133.compute-1.amazonaws.com

>>> Configuring cluster...

>>> Running plugin starcluster.clustersetup.DefaultClusterSetup

>>> Configuring hostnames...

10710 LEELEERRRrrnnrrenrreererenereeereereeerereeereerreer e vt
>>> Creating cluster user: ipuser (uid: 1001, gid: 1001)

10710 LEELEERRRrrenereerrrerererrreerreerereeererereerreer e et
>>> Configuring scratch space for user(s): ipuser

10710 LEELERRRRrrnnerrnrrrerrrerereeereerreeeereerreereeervrer et
>>> Configuring /etc/hosts on each node

10710 LEELRERRRRrenrrenrreerererereerreerveeeereeereerreer v et
>>> Starting NFS server on master

>>> Configuring NFS exports path(s):

/home

>>> Mounting all NFS export path(s) on 9 worker node(s)

O/ TEELEERRERrRr e e e e e e e e e e e e e e e e
>>> Setting up NFS took 0.663 mins

>>> Configuring passwordless ssh for root

>>> Configuring passwordless ssh for ipuser

>>> Running plugin ipython

>>> Installing Python packages on all nodes:

>>> $ pip install python-msgpack

>>> Configuring cluster took 12.865 mins
>>> Starting cluster took 20.144 mins



I PLy]: Fython .

Notebook interface: in-browser, interactive data
exploration environment

|IPython.parallel: async load-balancing API for
Interactive dispatching processing

Based on ZeroMQ and msgpack for [PC



In [1]: from IPython.parallel import Client
lb = Client().load balanced view()
len(1lb)

Out[l]: 79

In [2]: def compute stuff(a, b):
import time, random

time.sleep(random.randint(0, 10))
return a ** 2 + b - 42

tasks = []
for a, b in zip(range(100), range(0, 200, 2)):
tasks.append(lb.apply(compute stuff, a, b))

In [3]: sum(t.ready() for t in tasks)

Out[3]: 29

In [4]: [t.get() for t in tasks][:10]

Out[4]: [-42, -39, -34, -27, -18, -7, 6, 21, 38, 57]



Grow random trees
in parallel in the cloud



Fetch pback all the trees
as a big forest on one node



from copy import copy

def combine(all forests):
"""Aggregate sub-forests into a big forest
final forest = copy(all forests[0])
final forest.estimators =

for forest in all forests:
final forest.estimators += forest.estimators

final forest.n _estimators = len(final forest.estimators )

return final forest



Demo
http://|.mp/pyrallel-mslir


http://j.mp/pyrallel-mslr

Results

e NDGC@5: ~0.52 for 500 trees on MSLR-WEB10K
e Could maybe be improved by:

e increasing the number of trees (but model gets too
big In memory and slower to predict)

e replacing base trees by bagged GBRT models
e pairwise or list-wise ranking models (not in sklearn)

* Linear regression model baseline: NDGC@5: ~0.43



Your turn now!
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Questions?

http://ipython.org
http://scikit-learn.org
http://star.mit.edu/cluster
https://github.com/pydata/pyrallel

http://github.com/ogrisel/notebooks




Backup slides



| oading the data with
Scikit-learn

from os.path import expanduser
from sklearn.datasets import load svmlight file

filepath train = expanduser('~/data/MSLR-WEB10K/Foldl/train.txt')

X train sparse, y train, qgid train = load svmlight file(
filepath train, dtype=np.float32, query id=True)

X train = X train.toarray()



NDCG in Python

def dcg(relevances, rank=10):

def

Discounted cumulative gain at rank (DCG)
relevances = np.asarray(relevances)[:rank]
n relevances = len(relevances)

if n relevances == 0:

return 0.

discounts = np.log2(np.arange(n relevances) + 2)
return np.sum(relevances / discounts)

ndcg(relevances, rank=10):
"""Normalized discounted cumulative gain (NDGC)"""
best dcg = dcg(sorted(relevances, reverse=True), rank)
if best dcg == 0:

return 0.

return dcg(relevances, rank) / best dcg



