
Growing Randomized 
Trees in the Cloud

Budapest BI Forum - 2013



Outline

• Predictive Modeling 

• Application to “Learning to Rank” for web search 

• Forests of Randomized Trees 

• The Python ecosystem: Scikit-learn, IPython, 
StarCluster



Training!
text docs!
images!
sounds!

transactions

Labels

Predictive Modeling Data Flow



Training!
text docs!
images!
sounds!

transactions

Labels

Predictive Modeling Data Flow

Feature vectors



Training!
text docs!
images!
sounds!

transactions

Labels

Machine!
Learning!
Algorithm

Predictive Modeling Data Flow

Feature vectors



Training!
text docs!
images!
sounds!

transactions

Labels

Machine!
Learning!
Algorithm

Model

Predictive Modeling Data Flow

Feature vectors



Training!
text docs!
images!
sounds!

transactions

Labels

Machine!
Learning!
Algorithm

New!
text doc!
image!
sound!

transaction

Model Expected!
Label

Predictive Modeling Data Flow

Feature vectors

Feature vector



Example: Learning to Rank



Example: Learning to Rank
• Learning to rank web search results 

• Input: numerical descriptors for query / results pairs 

• Target: relevance score 

• 0: irrelevant 

• 1: somewhat relevant 

• 2: relevant



Input Features
• Result page descriptors: 

• PageRank, Click Through Rate,  
last update time… 

• Query / Result page descriptors 

• BM25, TF*IDF cosine similarity 

• Ratio of covered query terms 

• User context descriptors: past user interactions (clicks, +1), time of 
the day, day of the month, month of the year and user language 

• … typically more than 40 descriptors and up to several hundreds



Quantifying Success
• Measure discrepancy between predicted and true 

relevance scores 

• Traditional Regression Metrics: 

• Mean Absolute Error 

• Explained Variance 

• But the ranking quality is more important than the 
predicted scores…



NDCG: a ranking metric



NDCG in Greek

DCGk == Discounted Cumulative Gains at rank k



Data from Microsoft Bing
• http://research.microsoft.com/en-us/projects/mslr 

• 10K or 30K anonymized queries (terms and results URLs) 

• 10K queries:  

• ~1.2M search results 

• 136 descriptors 

• 5 target relevance levels 

• ~650MB in NumPy

http://research.microsoft.com/en-us/projects/mslr


Disclaimer: 
this is not Big Data

• Couple of GB: fits in RAM on my laptop 

• But painful to download / upload over the internet. 

• Processing and modeling can be CPU intensive 
(and sometimes distributed).



Growing randomized trees



Training a Decision Tree



Training a Decision Tree
Term 
Match!
Rate



Training a Decision Tree
Term 
Match!
Rate

< 0.2 > 0.2



Training a Decision Tree
Term 
Match!
Rate

Score 
== 
0

< 0.2 > 0.2



Training a Decision Tree
Term 
Match!
Rate

Score 
== 
0

< 0.2
PageRank

> 0.2

< 3 > 3



Training a Decision Tree
Term 
Match!
Rate

Score 
== 
0

< 0.2
PageRank

> 0.2

< 3

Score 
== 
1

> 3



Training a Decision Tree
Term 
Match!
Rate

Score 
== 
0

< 0.2
PageRank

> 0.2

< 3

Score 
== 
1

> 3

Score 
== 
2



Training a Randomized Tree

• Pick a random subset of features (e.g. TFIDF, 
BM25, PageRank, CTR…) 

• Find the feature that best splits the dataset 

• Randomize the split threshold between observed 
min and max values 

• Send each half of the split dataset to build the 2 
subtrees



Training a Forest
• Train n random trees independently 

• Use different PRNG seeds 

• At prediction time, make each tree predict its best 
guess and: 

• make them vote (classification) 

• average predicted values (regression)



Extra Trees 
one node with 8 CPUs 



Growing randomized trees 
on the cloud



10x8 cores cluster on EC2 
in 20min





 >>> Configuring cluster took 12.865 mins!
 >>> Starting cluster took 20.144 mins



• Notebook interface: in-browser, interactive data 
exploration environment 

• IPython.parallel: async load-balancing API for 
interactive dispatching processing 

• Based on ZeroMQ and msgpack for IPC





Grow random trees 
in parallel in the cloud



Fetch back all the trees 
 as a big forest on one node





Demo 
http://j.mp/pyrallel-mslr

http://j.mp/pyrallel-mslr


Results
• NDGC@5: ~0.52 for 500 trees on MSLR-WEB10K 

• Could maybe be improved by: 

• increasing the number of trees (but model gets too 
big in memory and slower to predict) 

• replacing base trees by bagged GBRT models 

• pairwise or list-wise ranking models (not in sklearn) 

• Linear regression model baseline: NDGC@5: ~0.43



Your turn now!





Questions?

• http://ipython.org 

• http://scikit-learn.org!

• http://star.mit.edu/cluster 

• https://github.com/pydata/pyrallel 

• http://github.com/ogrisel/notebooks



Backup slides



Loading the data with 
Scikit-learn



NDCG in Python


