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Outline

• Predictive Modeling 

• Application to “Learning to Rank” for web search 

• Forests of Randomized Trees 

• The Python ecosystem: Scikit-learn, IPython, 
StarCluster
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Example: Learning to Rank



Example: Learning to Rank
• Learning to rank web search results 

• Input: numerical descriptors for query / results pairs 

• Target: relevance score 

• 0: irrelevant 

• 1: somewhat relevant 

• 2: relevant



Input Features
• Result page descriptors: 

• PageRank, Click Through Rate,  
last update time… 

• Query / Result page descriptors 

• BM25, TF*IDF cosine similarity 

• Ratio of covered query terms 

• User context descriptors: past user interactions (clicks, +1), time of 
the day, day of the month, month of the year and user language 

• … typically more than 40 descriptors and up to several hundreds



Quantifying Success
• Measure discrepancy between predicted and true 

relevance scores 

• Traditional Regression Metrics: 

• Mean Absolute Error 

• Explained Variance 

• But the ranking quality is more important than the 
predicted scores…



NDCG: a ranking metric



NDCG in Greek

DCGk == Discounted Cumulative Gains at rank k



Data from Microsoft Bing
• http://research.microsoft.com/en-us/projects/mslr 

• 10K or 30K anonymized queries (terms and results URLs) 

• 10K queries:  

• ~1.2M search results 

• 136 descriptors 

• 5 target relevance levels 

• ~650MB in NumPy

http://research.microsoft.com/en-us/projects/mslr


Disclaimer: 
this is not Big Data

• Couple of GB: fits in RAM on my laptop 

• But painful to download / upload over the internet. 

• Processing and modeling can be CPU intensive 
(and sometimes distributed).



Growing randomized trees
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Training a Randomized Tree

• Pick a random subset of features (e.g. TFIDF, 
BM25, PageRank, CTR…) 

• Find the feature that best splits the dataset 

• Randomize the split threshold between observed 
min and max values 

• Send each half of the split dataset to build the 2 
subtrees



Training a Forest
• Train n random trees independently 

• Use different PRNG seeds 

• At prediction time, make each tree predict its best 
guess and: 

• make them vote (classification) 

• average predicted values (regression)



Extra Trees 
one node with 8 CPUs 



Growing randomized trees 
on the cloud



10x8 cores cluster on EC2 
in 20min





 >>> Configuring cluster took 12.865 mins!
 >>> Starting cluster took 20.144 mins



• Notebook interface: in-browser, interactive data 
exploration environment 

• IPython.parallel: async load-balancing API for 
interactive dispatching processing 

• Based on ZeroMQ and msgpack for IPC





Grow random trees 
in parallel in the cloud



Fetch back all the trees 
 as a big forest on one node





Demo 
http://j.mp/pyrallel-mslr

http://j.mp/pyrallel-mslr


Results
• NDGC@5: ~0.52 for 500 trees on MSLR-WEB10K 

• Could maybe be improved by: 

• increasing the number of trees (but model gets too 
big in memory and slower to predict) 

• replacing base trees by bagged GBRT models 

• pairwise or list-wise ranking models (not in sklearn) 

• Linear regression model baseline: NDGC@5: ~0.43



Your turn now!





Questions?

• http://ipython.org 

• http://scikit-learn.org!

• http://star.mit.edu/cluster 

• https://github.com/pydata/pyrallel 

• http://github.com/ogrisel/notebooks



Backup slides



Loading the data with 
Scikit-learn



NDCG in Python


