
Customer Behaviour Analytics:
Billions of Events to

one Customer-Product Graph
Budapest BI Forum, 6th November 2013

Presented by Paul Lam

About Paul Lam
Joined uSwitch.com as first Data Scientist in 2010

• developed internal data products
• built distributed data architecture
• team of 3 with a developer and a statistician

Code contributor to various open source tools
• Cascalog, a big data processing library built on top of

Cascading (comparable to Apache Pig)
• Incanter, a statistical computing platform in Clojure

Author of Web Usage Mining: Data Mining Visitor Patterns
From Web Server Logs* to be published in late 2014

* tentative title

What is it

Customer-Product Graph

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

[:BUY {:timestamp 2013-11-01 13:00:00}]

bought
viewed

Question: Who bought an iPhone?

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

bought
viewed

Query: Who bought an iPhone?

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

X

START
x=node:node_auto_index(product='iPhone')

MATCH (person)-[:BUY]->(x)

RETURN person

Question: What else did they buy?

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

X

Y

bought
viewed

Query: What else did they buy?

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

X

START x=node:node_auto_index(product='iPhone')

MATCH
 (x)<-[:BUY]-(person)-[:BUY]->(y)

RETURN y

Hypothesis: People that buy X has interest in Y

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

X

Y

bought
viewed

Query: Who to recommend Y

{:name “Bob”}

{:name “Tom”}

{:name “Emily”}

{:name “Lily”}

{:product “iPhone”}

{:product “American Express”}

X

Y

START
x=node:node_auto_index(product='iPhone'),
y=node:node_auto_index(product='American
Express')

MATCH (p)-[:BUY]->(x),
 (p)-[:VIEW]->(y)
WHERE NOT (p)-[:BUY]->(y)

RETURN p

Haven’t
bought AE

Looked
at AE

Product Recommendation by Reasoning Example

1. Start with an idea
2. Trace to connected nodes
3. Identify patterns from viewpoint of those nodes
4. Repeat from #1 until discovering actionable item
5. Apply pattern

Interactive demo at http://bit.ly/customer_graph

http://gist.neo4j.org/?7010516
http://gist.neo4j.org/?7010516

Challenge: Event Data to Graph Data

User ID Product ID Action

Bob iPhone Bought

Tom iPhone Bought

Emily iPhone Bought

Bob AE Bought

Emily AE Viewed

Lily AE Bought

Why should you care

14

Customer Journey

Interest Desire

Action

Customer Journey

15

16

Understanding Stages of Customer

Interest
Desire

Action

Purchase funnel, http://en.wikipedia.org/wiki/Purchase_funnel

http://en.wikipedia.org/wiki/Purchase_funnel
http://en.wikipedia.org/wiki/Purchase_funnel

17

Customer Experience as a Graph

18

A Feedback System

Minimise effort between Q & A

Question

Answer Data Interrogation

One Approach: Make data querying easier

Query = Function(Data) [1]

 ~ Function(Data Structure)

[1] Figure 1.3 from Big Data (preview v11) by Nathan Marz and James Warren

Data Structure: Relations versus Relations

User ID Name

1 Bob

2 Emily

Product ID Name

1 iPhone

2 A.E.

Sale ID User ID Product ID Profit

1 1 1 £100

2 1 2 £50 {:profit £100}

{:profit £50}

aka Edges

Using the right database for the right task

RDBMS Graph DB

Data

Model

Relation

Example use

Attributes Entities and relations

Record-based Associative

By-product of
normalisation First class citizen

Reporting Reasoning

How does it work

User actions as time-stamped records

HDFS

time

Paul Ingles, “User as Data”, Euroclojure 2012

Our User Event to Graph Data Pipeline

Graph DatabaseHDFS Reshape

time

From Input to Output with Hadoop, aka ETL step

Graph DatabaseHDFS Reshape

4... The 80%

2. input data 3. output data

1. interface

Hadoop interface to Neo4J

Graph DatabaseHDFS Reshape

• Cascading-Neo4j tap [1]

• Faunus Hadoop binaries [2]

• CSV files*
• etc.

[1] http://github.com/pingles/cascading.neo4j
[2] http://thinkaurelius.github.io/faunus/

http://thinkaurelius.github.io/faunus/
http://thinkaurelius.github.io/faunus/
http://thinkaurelius.github.io/faunus/
http://thinkaurelius.github.io/faunus/
http://thinkaurelius.github.io/faunus/
http://thinkaurelius.github.io/faunus/

Input data stored on HDFS

time

1 2 3 4
User Timestamp Viewed Page Referrer

Paul 2013-11-01 13:00 /homepage/ google.com
Paul 2013-11-01 13:01 /blog/ /homepage/
User Timestamp Viewed Product Price Referrer

Paul 2013-11-01 13:04 iPhone £500 /blog/
User Timestamp Purchased Paid Attrib.

Paul 2013-11-01 13:05 iPhone £500 google.com
User Landed Referral Email

Paul 2013-11-01 13:00 google.com paul.lam@uswitch.com

1
2

3

4

mailto:bob@me.com
mailto:bob@me.com

Nodes and Edges CSVs to go into a property graph
Node ID Properties

1 {:name “Paul”, email: “paul.lam@uswitch.com”}

2 {:domain “google.com”}

3 {:page “/homepage/”}

... ...

5 {:product “iPhone”}

From To Type Properties

1 2 :SOURCE {:timestamp “2013-11-01 13:00”}

1 3 :VIEWED {:timestamp “2013-11-01 13:00”}

...

1 5 :BOUGHT {:timestamp “2013-11-01 13:05”}

mailto:bob@me.com
mailto:bob@me.com

30

Records to Graph in 3 Steps

1. Design graph

2. Extract Nodes

3. Build Relations

^ importable CSV

31

Step 1: Designing your graph

{:name “Paul”
 :email “paul.lam@uswitch.com}

{:product “iPhone”}

{:domain “google.com”}

{:page “homepage”}

{:page “blog”} :source {:timestamp ... }

:viewed { ... }

:bought {:timestamp ... }:viewed {:timestamp ... }

:viewed { ... }

mailto:paul.lam@uswitch.com
mailto:paul.lam@uswitch.com

Step 2: Extract list of entity nodes

User Timestamp Purchased Paid Attrib.

Paul 2013-11-01 13:05 iPhone £500 google.com

User Landed Referral Email

Paul 2013-11-01 13:00 google.com paul.lam@uswitch.com

User Timestamp Viewed Page Referrer

Paul 2013-11-01 13:00 /homepage/ google.com
Paul 2013-11-01 13:01 /blog/ /homepage/

User Timestamp Viewed Product Price Referrer

Paul 2013-11-01 13:04 iPhone £500 /blog/

mailto:bob@me.com
mailto:bob@me.com

User Landed Referral Email

Paul 2013-11-01 13:00 google.com paul.lam@uswitch.com

Step 3: Building node-to-node relations

User Timestamp Purchased Paid Attrib.

Paul 2013-11-01 13:05 iPhone £500 google.com

User Timestamp Viewed Page Referrer

Paul 2013-11-01 13:00 /homepage/ google.com
Paul 2013-11-01 13:01 /blog/ /homepage/

User Timestamp Viewed Product Price Referrer

Paul 2013-11-01 13:04 iPhone £500 /blog/

mailto:bob@me.com
mailto:bob@me.com

Do this across all customers and products

Use your data processing tool of choice:

• Apache Hive
• Apache Pig
• Cascading

• Scalding
• Cascalog

• Spark
• your favourite programming language

Paco Nathan, “The Workflow Abstraction”, Strata SC, 2013.

and more ...

35

Cascalog code to build user nodes
• 145 lines of Cascalog code in production
• a couple hundred lines more of utility functions
• build entity nodes and meta nodes
• sink data into database with Cascading-Neo4j Tap

36

Code to build user to product click relations

• 160 lines of Cascalog code in production
• + utility functions
• build direct and categoric relations
• sink data with Cascading-Neo4j Tap

Summary

Graph HDFS Reshape

Contact

Paul Lam, data scientist at uSwitch.com

Email: paul@quantisan.com
Twitter: @Quantisan

mailto:paul@quantisan.com
mailto:paul@quantisan.com

